

Instituto Politécnico de Castelo Branco

Baptista, Cláudia Patrícia do Rosário

Monitorização das ETAR'S da cidade de Viana do Castelo

https://minerva.ipcb.pt/handle/123456789/950

Metadados

Data de Publicação 200

Resumo A água, um dos recursos naturais indispensáveis à vida e ao

desenvolvimento, é seguramente o mais abundante, mas também aquele, cuja falta será mais notada, uma vez que é utilizado em diversas actividades humanas. Um dos principais problemas associado à poluição da água é a descarga de águas residuais não tratadas em massas hídricas. Assim sendo, o tratamento de águas residuais torna-se uma questão de importância vital, não só no que respeita à protecção do ambiente e saúde

pública, mas também ...

Palavras Chave Bulking, Comunidade biótica, Foaming, Lamas activadas

Tipo report

Revisão de Pares Não

Coleções ESACB - Engenharia dos Recursos Naturais e Ambiente

Esta página foi gerada automaticamente em 2024-05-02T08:38:59Z com informação proveniente do Repositório

Monitorização das ETAR'S da Cidade de Viana do Castelo

Engenharia dos Recursos Naturais e Ambiente Relatório do Trabalho de Fim de Curso

Cláudia Patrícia do Rosário Baptista

CASTELO BRANCO

2007

Índice

Índice de figuras	III
Índice de quadros	IV
Índice de tabelas	IV
Resumo	V
Abstract	VI
Lista de abreviaturas	VII
1 - Introdução	1
2 – Legislação	3
3 – Caracterização das ETAR's estudadas	4
3.1 – Breve descrição das ETAR's em estudo	4
3.2 – Descrição dos processos de tratamento	6
3.2.1 – Tratamento da fase líquida	6
3.2.1.1 – Tratamento preliminar	6
3,2.1.2 – Tratamento primário	8
3.2.1.3 – Tratamento secundário	8
3.2.1.4 – Tratamento terciário ou de afinação	11
3.2.2 – Tratamento da fase sólida	12
4 – Comunidade microbiana num sistema de lamas activadas	14
4.1 – Bactérias	15
4.2 - Protozoários	21
4.2.1 – Ciliados	21
4.2.2 – Flagelados	23
4.2.3 – Amibas	23
5 – Metodologia	25
5.1 – Laboratório	25
5.2 - Controlo analítico	28
5.3 – Índice biótico de lamas	32
6 – Discussão de resultados	35
6.1 – ETAR da Cidade	35
6.1.1 – Análise da eficiência do tratamento primário	35
6.1.2 – Análise da eficiência do tratamento secundário	40
6.1.3 – Análise do funcionamento global	45

6.2 – ETAR da ZI	48
6.2.1 – Análise da eficiência do tratamento primário	48
6.2.2 – Análise da eficiência do tratamento secundário	53
6.2.3 - Análise da eficiência do tratamento terciário	56
6.2.4 – Análise do funcionamento global	58
6.3 – Análise e caracterização da comunidade biótica de lamas	60
7 – Considerações finais	66
8 – Referências bibliográficas	68
Anexos	*

Resumo

A água, um dos recursos naturais indispensáveis à vida e ao desenvolvimento, é seguramente o

mais abundante, mas também aquele, cuja falta será mais notada, uma vez que é utilizado em

diversas actividades humanas.

Um dos principais problemas associado à poluição da água é a descarga de águas residuais não

tratadas em massas hídricas. Assim sendo, o tratamento de águas residuais torna-se uma questão de

importância vital, não só no que respeita à protecção do ambiente e saúde pública, mas também na

promoção do desenvolvimento.

O tratamento biológico por lamas activadas é uma das técnicas mais utilizadas no tratamento de

águas residuais. Neste tipo de tratamento, o tanque de arejamento tem um papel fundamental.

Aqui, a matéria orgânica presente na água residual é degradada por acção de uma comunidade

diversificada de bactérias aeróbias (90%) e protozoários. No entanto, um desenvolvimento

excessivo das bactérias filamentosas pode causar problemas, como é o caso do bulking e do

foaming.

Para se avaliar qualitativa e quantitativamente uma água residual, tem que se proceder à análise de

parâmetros indicadores de qualidade, assim como a características físico-químicas, que no seu

conjunto nos dão informações acerca da sua origem e natureza, permitindo uma avaliação da carga

poluente presente na água residual.

Palavras-chave: Bulking, comunidade biótica, foaming, lamas activadas.