

Instituto Politécnico de Castelo Branco

Pimenta, Ana Catarina Mendes

Degradação de corantes AZO pela degradação da bactéria Pseudomonas putida MET 94

https://minerva.ipcb.pt/handle/123456789/600

Metadados

Data de Publicação 20

Resumo Um

Uma grande percentagem de corantes utilizados na indústria têxtil é libertada nos efluentes industriais. Sendo os tratamentos convencionais para a sua remoção difíceis, procura-se alternativamente encontrar uma aproximação biotecnológica a estes. Investigou-se a capacidade da bactéria Pseudomonas putida MET 94 na degradação de corantes da indústria têxtil e caracterizou-se o crescimento da estirpe em condições aeróbias e anaeróbias, na ausência e presença do corante azo, Sudan

Orange G (SOG), s...

Editor IPCB. ESA

Palavras Chave Corante azo, Sudan Orange G, Degradação, Pseudomonas putida

Tipo report

Revisão de Pares Não

Coleções ESACB - Engenharia Biológica e Alimentar

Esta página foi gerada automaticamente em 2024-04-29T09:26:07Z com informação proveniente do Repositório

DEGRADAÇÃO DE CORANTES AZO PELA BACTÉRIA *Pseudomonas putida* MET 94

Engenharia Biológica e Alimentar Relatório do Trabalho de Fim de Curso

Ana Catarina Mendes Pimenta

CASTELO BRANCO

2007

Índice

Índice de Figuras	I
Índice de Tabelas	III
Resumo	I V
Abstract	V
1. Introdução	1
1.1 Corantes	2
1.1.1 História dos corante	2
1.1.2 Cor nos efluentes têxteis	3
1.1.3 Classificação dos corantes	4
1.1.4 Corantes azo	4
. 1.1.5 Remoção dos corantes	5
1.2 Crescimento microbiano	6
1.3 Cinética enzimática	8
1.3.1 Cofactores	11
1.4 Pseudomonas putida	11
2. Materiais e Métodos	13
2.1 Crescimento de P. putida em condições aerobiose e anaerobiose	13
2.1.1 Crescimento em condições aerobiose	13
2.1.2 Crescimento em condições anaerobiose	14
2.2 Crescimento na presença de corante Sudan Orange G em condições de	
aerobiose e anerobiose	14
2.3 Degradação do SOG com células inteiras de P. putida	17
2.3.1 Obtenção de células	17
2.3.2 Estudo da descoloração células inteiras P. putida	19
2.3.2.1 Efeito da concentração de celular	19
2.3.2.2 Efeito do pH	19
2.3.2.3 Efeito da temperatura	20
2.3.2.4 Estudo da cinética de descoloração	20
2.3.2.5 Efeito da adição de um mediador redox	21
2.3.2.6 Cinética de degradação de corantes monitorizada por HPLC	21
2.4 Actividade enzimática com extractos celulares	22
2.4.1 Preparação do extracto celular	22

· ·
2.4.1.1 Determinação da concentração de proteína23
2.4.2 Actividade enzimática com extractos celulares em condições de aerobiose
e anaerobiose24
2.4.2.1 Efeito da concentração de proteína na degradação com extracto celular24
2.4.2.2 Efeito do pH na degradação com extracto celular :
2.4.2.3 Efeito da adição de um mediador redox na degradação com extracto
celular
2.4.2.4 Efeito de cofactores na degradação com extracto celular
2.4.3 Actividade enzimática nas fracções
3. Resultados e Discussão27
3.1 Crescimentos em condições de aeróbias e anaeróbias na presença e ausência
de corante
3.1.1 Crescimentos na ausência de corante
3.1.2 Crescimentos na presença de corante em aerobiose e anaerobiose,
com células pré-adaptadas
3.2 Estudo da descoloração células inteiras P. putida em repouso, não adaptadas em
anaerobiose31
3.2.1 Efeito da concentração celular na catálise com células inteiras32
3.2.2 Efeito do pH na catálise com células inteiras
3.2.3 Efeito da temperatura na catálise com células inteiras
3.2.4 Estudo da cinética de descoloração na catálise com células inteiras36
3.2.5 Efeito da adição de um mediador redox na catálise com células inteiras37
3.2.6 Cinética de degradação de corantes monitorizada por HPLC39
3.3 Actividade enzimática na presença de extracto celular
3.3.1 Actividade enzimática com extracto celular em condições de aerobiose e
anaerobiose41
3.3.2 Efeito da concentração de proteína na degradação com extracto celular42
3.3.3 Efeito do pH na degradação com extracto celular
3.3.4 Efeito do mediador na degradação com extracto celular
3.3.5 Degradação do SOG com extracto celular na presença de cofactores43
3.4 Actividade enzimática nas fracções
4. Conclusões
5. Referências Bibliográficas
Agradecimentos

Resumo

Uma grande percentagem de corantes utilizados na indústria têxtil é libertada nos efluentes industriais. Sendo os tratamentos convencionais para a sua remoção difíceis, procura-se alternativamente encontrar uma aproximação biotecnológica a estes.

Investigou-se a capacidade da bactéria *Pseudomonas putida* MET 94 na degradação de corantes da indústria têxtil e caracterizou-se o crescimento da estirpe em condições aeróbias e anaeróbias, na ausência e presença do corante azo, Sudan Orange G (SOG), sendo o crescimento anaeróbio bastante mais lento e com maior capacidade degradativa (80%) do que em aerobiose (31%).

Na degradação do corante com células inteiras, estudou-se o efeito de alguns parâmetros (p.e. concentração celular, pH, temperatura, cinética e adição do mediador), sendo as condições óptimas de degradação em anaerobiose a pH 8,0, 30°C e 50μM. Na presença de mediador antraquinone-2-sulfonate, AQS, verifica-se um aumento da velocidade com a concentração.

Por HPLC, comparou-se a percentagem e velocidade de descoloração para as condições óptimas, verificando-se a redução de 100% do pico de corante para uma velocidade de 0, 1 8 nmol/min.mL e observando-se a formação de novos produtos.

Estudaram-se ainda alguns parâmetros do sistema enzimático envolvido com extractos celulares, fracção membranar e solúvel: concentração de proteína, pH, efeito do mediador e cofactores (NAD, NADP, FAD e FMN).

Palavras-chave: Corante azo; Sudan Orange G; Degradação; Pseudomonas putida.