

Instituto Politécnico de Castelo Branco

Silvério, Abel Mendes

Estudo da utilização de água residual urbana na rega de milho forrageiro (Zea mays L.)

https://minerva.ipcb.pt/handle/123456789/1799

Metadata

Issue Date 2000

Abstract O objectivo principal desta experiência foi avaliar a relevância que a água

residual com ou sem cloragem tem, quando usada em irrigação. Esta experiência foi efectuada num ensaio em produção com milho (Zea mays L.). A cloragem foi efectuada com hipoclorito de sódio (NadO) com uma dose de 3 mg.l-1 de cloro residual livre. Observámos que o uso de água residual com ou sem cloro não afectou a produção, no entanto a água residual aumenta os níveis de matéria orgânica, potássio "assimilável",

fósforo...

Type report

Peer Reviewed No

Collections ESACB - Engenharia de Produção Agrícola

This page was automatically generated in 2024-05-20T21:58:44Z with information provided by the Repository

ESTUDO DA UTILIZAÇÃO DE ÁGUA RESIDUAL URBANA NA REGA DE MILHO FORRAGEIRO (Zea mays L.)

Engenharia de Produção Agrícola

Relatório do Trabalho de Fim de Curso

Abel Mendes Silvério

CASTELO BRANCO 2000

Índice

Resumo	
Abstrat	
Índice de	figuras
Índice de	
	abreviatura

1 - Introdução	1
II- Revisão bibliográfica	4
1- Caracterização da cultura	5
1.1 – Breve nota histórica	5
1.2 – Classificação sistemática	5
1.3 – Descrição botânica	6
1.4 - Fases do ciclo vegetativo	 6
1.5 – Clima e solo	7

1.5.1-Temperatura	7
1.5.2- Água	7
1.5.3- Solos	7
2- Caracterização das águas residuais	8
2.1- Caracterização das águas residuais urbanas	9
2.2- Características físicas	10
2.2.1- Sólidos totais	11
2.2.2- Odor	11
2.2.3- Temperatura	11
2.2.4- Cor e turvação	12
2.3- Características químicas	12
2.3.1- Compostos orgânicos	13
2.3.2- pH	13
2.3.3- Nutrientes	14
2.3.4- Elementos não nutrientes	14
2.4- Características biológicas	14
2.4.1- Bactérias	15
2.4.2- Vírus	16
2.4.3- Protozoários	16
2.4.4- Helmintes	17
2.4.5- Transmissão de patogénios	17
3- Cloragem da água rega	20
3.1- Considerações gerais	20
3.2- Métodos de desinfecção	21
3.3- Mecanismos de desinfecção	21
3.4- Factores que influenciam a acção dos desinfectantes	22
3.5- O cloro como desinfectante	23
3.5.1- Hipocloritos	23
3.5.2- Outros desinfectantes	23
3.6- Cloragem	24
3.6.1- Reactividade do cloro	24
3.6.2- Comportamento do cloro na água	24
3.6.3- Cloraminas e reacção de "breakpoint"	25

3.6.4- Cloragem no "breakpoint"	26
3.7- Cloro livre e cloro residual	27
3.8- Redução do cloro livre	28
4- Qualidade de uma água para rega	29
4.1- Salinidade	31
4.1.1- Medidas para controlar a salinidade	32
4.2- Toxicidade iónica especifica	33
4.3- Permeabilidade	33
4.3.1- Medidas minimizadoras do problema de permeabilidade	34
4.4- Micronutrientes e metais pesados	34
4.5- Acidez e alcalinidade	36
4.6- Cloro residual	36
4.7- Substancias org. dissolvidas	37
4.8- Aspectos microbiológicos	37
III- Parte experimental	39
5- Material e métodos	40
5.1- Delineamento experimental	40
5.2- Descrição do ensaio	40
5.2.1- Localização	40
5.2.2- Clima	41
5.3- Materiais utilizados	42
5.3.1- Solo	42
5.3.2- Cultura	43
5.3.3- Água de rega	43
5.4- Instalação do ensaio	45
5.4.1- Preparação e fertilização do solo	45
5.4.2- Sementeira	45
5.5- Condução do ensaio	46
5.5.1- Rega	46
5.5.2- Acompanhamento do ensaio	48
5.5.3- Colheita das plantas e amostras de solo	48
5.5.4- Análises efectuadas	49

6- Resultados e discussão	50
6.1- Produção	50
6.2- Análise dos efeitos da rega com água residual no solo	52
6.2.1- M.O.	52
6.2.2- pH	53
6.2.3- Condutividade eléctrica	54
6.2.4- Azoto amoniacal	54
6.2.5- Fósforo "assimilável"	55
6.2.6- Potássio "assimilável"	55
6.2.7- Bases de troca	56
6.2.8- Zinco	57
6.2.9- Cobre	57
6.2.10- Boro	58
7- Conclusões	59
7.1- Efeito da água residual	59
7.1.1- Na produção de forragem	59
7.1.2- Na evolução de alguns parâmetros de fertilidade do solo	59
7.2- Efeito da cloragem	60
7.2.1- Na produção de forragem	60
7.2.2- Na evolução de alguns parâmetros de fertilidade do solo	60
8- Referencias bibliográficas	

9- Anexos

Resumo

O objectivo principal desta experiência foi avaliar a relevância que a água residual com ou sem cloragem tem, quando usada em irrigação. Esta experiência foi efectuada num ensaio em produção com milho (Zea mays L.).

A cloragem foi efectuada com hipoclorito de sódio (NadO) com uma dose de 3 mg.l⁻¹ de cloro residual livre. Observámos que o uso de água residual com ou sem cloro não afectou a produção, no entanto a água residual aumenta os níveis de matéria orgânica, potássio "assimilável", fósforo "assimilável" e potássio de troca.

O valor do pH, azoto amoniacal, das bases de troca: sódio, cálcio e magnésio, do cobre e do bom do solo não foram afectados pelo uso de água residual com ou sem cloragem. O uso de água residual conduziu à diminuição dos níveis de zinco no solo.