

Instituto Politécnico de Castelo Branco

Dias, Maria João Tavares Ribeiro

Utilização do composto urbano na formulação de substratos de enraizamento em estacas de crisântemo (Chrysantemum hortorum L.)

https://minerva.ipcb.pt/handle/123456789/1744

Metadados

Data de Publicação 1999

Resumo Com o presente trabalho, pretendeu-se estudar a possibilidade de

utilização do composto urbano na formulação de substratos destinados à implantação de estacas de Chysanthemum hortorum L. procurando identificar potenciais factores que pudessem condicionar essa utilização. Foi delineado um ensaio, utilizando o substrato convencional de

enraizamento (turfa:perlite) e três misturas com proporções crescentes de composto urbano (C.U.), (turfa:perlite:C.U). No que respeita às análises

feitas em labor...

Palavras Chave Crisântemo, Substratos, Composto urbano

Tipo report

Revisão de Pares Não

Coleções ESACB - Engenharia de Produção Agrícola

Esta página foi gerada automaticamente em 2024-06-01T22:29:11Z com informação proveniente do Repositório

UTILIZAÇÃO DO COMPOSTO URBANO NA FORMULAÇÃO DE SUBSTRATOS DE ENRAIZAMENTO EM ESTACAS DE CRISÂNTEMO (Chrysanthemum hortorum L.)

Engenharia de Produção Agrícola

Relatório do Trabalho de Fim de Curso

Maria João Tavares Ribeiro Dias

CASTELO BRANCO

1999

ÍNDICE GERAL

AGRADECIMENTOS	
RESUMO	
ABSTRACT	
INTRODUÇÃO I	
1 – INTRODUÇÂO	1
REVISÃO BIBLIOGRÁFICA II	
2 – PROPRIEDADES DOS SUBSTRATOS	4
2.1 – Propriedades físicas	6
2.1.1 – Porosidade total	6
2.1.2 – Retenção de água.	8
2.2 – Propriedades químicas	10
2.2.1 – Complexo de troca catiónica	10
2.2.2 – Reacção do substrato (pH)	11
2.2.3 – Condutividade eléctrica	13
Efeitos da salinidade	13
Efeito do ião específico	13
Efeito osmótico	14
Desequilibrios nutricionais	15
2.2.4 – Disponibilidade de nutrientes	15
2.3 – Propriedades biológicas.	16
2.4 – Turfa	18
2.5 – Perlite	20
2.6 – Resíduos sólidos urbanos compostados	20
3 – CARACTERIZAÇÃO FÍSICO-QUÍMICA DO COMPOSTO URBANO	22
4 – EFEITOS DA APLICAÇÃO DO C.U. EM ALGUMAS PROPRIEDADE	S
DO SOLO	27
5 – MÉTODOS DE PROPAGAÇÃO	35
5.1 – Propagação sexuada ou seminal	36
5.2 – Propagação assexuada ou vegetativa	37

5.2.1 – Propagação por divisão	38
5.2.2 – Propagação por estacas	39
Estaca foliar	39
Estaca caulinar	40
Estaca radicular	40
Estaca de gomo	41
5.2.3 – Mergulhia.	41
5.2.4 – Enxertia	42
5.2.5 – Cultura "in vitro"	42
5.3 - Condições ambientais da Propagação Vegetativa	43
5.3.1 – Temperatura	43
5.3.2 – Humidade relativa	43
5.3.3 – Luminosidade	44
5.4 - Condições fisiológicas da Propagação Vegetativa	
5.4.1 – Sanidade	45
5.4.2 – Idade	46
5.4.3 – Reguladores de crescimento	46
6 – CRISÂNTEMO (Chrysanthemum hortorum L.)	
6.1 – Aspectos botânicos	48
6.2 – Aspectos históricos.	
6.3 - Métodos de propagação do Crisântemo	50
PARTE EXPERIMENTAL III	
7 – MATERIAL E MÉTODOS	54
7.1 – Materiais utilizados	54
7.1.1 – Material vegetal	54
7.1.2 – Substratos	55
7.1.3 – Outro material	57
7.2 – Delineamento experimental	58
7.3 – Métodos laboratoriais de análise	60
8 – APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS	61
8.1 – Análise dos parâmetros de fertilidade dos substratos	61
8.1.1 – Humidade	61

	8.1.2 – Razão carbono/azoto	62
	8.1.3 – Matéria orgânica	64
	8.1.4 – Condutividade eléctrica	65
	8.1.5 – pH	66
	8.1.6 – Cálcio	67
	8.1.7 – Magnésio	68
	8.1.8 – Sódio	69
	8.1.9 – Cloretos	71
	8.1.10 – Fósforo total	72
	8.1.11 – Azoto total	73
8.2 -	Análise dos parâmetros qualitativos das estacas	75
	8.2.1 – Parte aérea da estaca	75
	8.2.1.1 – Índice de mortalidade	75
	8.2.1.2 - Número de folhas novas	77
	8.2.1.3 – Diâmetro a 3cm da base da estaca	78
	8.2.2 – Parte radicular da estaca.	78
	8.2.2.1 – Existência de primórdios radiculares	78
	8.2.2.2 - Comprimento da raiz principal	80
	8.2.2.3 – Desenvolvimento radicular	81
9 – CONS	SIDERAÇÕES FINAIS	82
REFERÊN	CIAS BIBLIOGRÁFICAS	84
ANEXOS		

(*)

RESUMO

Com o presente trabalho, pretendeu-se estudar a possibilidade de utilização do composto

urbano na formulação de substratos destinados à implantação de estacas de Chysanthemum

hortorum L. procurando identificar potenciais factores que pudessem condicionar essa

utilização.

Foi delineado um ensaio, utilizando o substrato convencional de enraizamento (turfa:perlite)

e três misturas com proporções crescentes de composto urbano (C.U.), (turfa:perlite:C.U).

No que respeita às análises feitas em laboratório nos substratos, não se verificaram

diferenças significativas que pudessem ser consideradas como factores limitantes ao

desenvolvimento das estacas. No entanto, no que respeita aos parâmetros observados nas

estacas herbáceas, verificou-se que doses superiores a 50% de composto, diminuem o

desenvolvimento radicular, nomeadamente o comprimento médio da raiz principal e a área

média de raízes.

Palavras chave: crisântemo, substratos, composto urbano.