

Instituto Politécnico de Castelo Branco

Delgado, Carla Cristina Farinha

Estudo do efeito da densidade na qualidade da pasta e dos papéis produzidos com fibra de Acacia melanoxylon

https://minerva.ipcb.pt/handle/123456789/2402

Metadados

Data de Publicação 20

Resumo Com o presente trabalho pretendeu-se avaliar o efeito das massas

volúmicas básicas de madeiras de Acacia melanoxylon (449, 489, 493, 505, 514 e 616 kg/m3) sobre as características das fibras e as correspondentes propriedades do papel. Para a produção das pastas cruas foram realizados os cozimentos Kratt. As pastas cruas obtidas, depois de desintegradas e lavadas, foram submetidas a um branqueamento ECF segundo una sequência de cinco estágios (D0E1D1E2D2). Partindo das

pastas branqueadas e poster...

Palavras Chave Acacia melanoxylon, Densidade da madeira, Fibras, Potencial papeleiro

Tipo report

Revisão de Pares Não

Coleções ESACB - Engenharia Florestal

Esta página foi gerada automaticamente em 2024-05-16T02:46:45Z com informação proveniente do Repositório

"ESTUDO DO EFEITO DA DENSIDADE NA QUALIDADE DA PASTA E DOS PAPÉIS PRODUZIDOS COM FIBRA DE Acacia melanoxylon"

Engenharia Florestal

Relatório do Trabalho de Fim de Curso

Carla Cristina Farinha Delgado

CASTELO BRANCO

2005

ÍNDICE

ÍNDICE DE TABELAS	VI
ÍNDICE DE FIGURAS	_ VII
ÍNDICE DE ANEXOS	IX
RESUMO	
ABSTRACT	
1. INTRODUÇÃO	1
2. REVISÃO BIBLIOGRÁFICA	4
2.1 A ESTRUTURA DA MADEIRA	4
2.2. PROPRIEDADES QUÍMICAS DA MADEIRA	5
2.2.1. Celulose	6
2.2.2. HEMICELULOSES	7
2.2.3. Lenhina	8
2.3. PROPRIEDADES ANATÓMICAS DA MADEIRA	9
2.4. PRODUÇÃO DE PASTA DE PAPEL	10
2.4.1. PROCESSO KRAFT OU PROCESSO AO SULFATO	
2.4.2. CARACTERIZAÇÃO DO PRODUTO	13
2.5. Branqueamento	13
3. MATERIAL E MÉTODOS	15
3.1. METODOLOGIA	15
3.1.1. MATÉRIA-PRIMA	
3.2. PROCESSO DE COZIMENTO, PREPARAÇÃO E CARACTERIZAÇÃO DA LIXÍVIA_	15
3.2.1. COZIMENTO	15
3.2.2. Preparação da Lixívia branca	
3.2.3. CARACTERIZAÇÃO DA LIXÍVIA NEGRA	16

3.3. CARACTERIZAÇÃO DA PASTA	17
3.3.1. DETERMINAÇÃO DO RENDIMENTO TOTAL	17
3.3.2. DETERMINAÇÃO DO ÍNDICE KAPPA (IK)	18
3.3.3. DETERMINAÇÃO DA VISCOSIDADE INTRÍNSECA DA PASTA	18
3.4. BRANQUEAMENTO	19
3.5. CARACTERIZAÇÃO FÍSICO-MECÂNICA	19
3.5.1. Refinação laboratorial	20
3.5.2. Propriedades morfológicas das fibras	20
3.5.3. Drenabilidade	21
3.5.4. GRAU DE RETENÇÃO DE ÁGUA (WRV)	
3.6. CARACTERIZAÇÃO DO PAPEL	22
3.6.1. FORMAÇÃO DE FOLHAS LABORATORIAIS	22
3.6.2. Propriedades estruturais	23
3.6.2.1. Gramagem	23
3.6.2.2. Massa volúmica	24
3.6.2.3. Espessura	24
3.6.2.4. Lisura	24
3.6.2.5. Permeabilidade ao ar	25
3.6.2.6 Rigidez	25
3.6.3. Propridades ópticas	25
3.6.4. Propriedades de Resistência	26
3.6.4.1. Resistência à tracção e alongamento	26
3.6.4.2. Resistência ao rasgamento	
3.6.4.3. Resistência ao rebentamento	27
3.6.4.4. Zero-span	28
3.7. Análise Estatística	28
4. RESULTADOS E DISCUSSÃO	30
4.1. PRODUÇÃO DE PASTAS KRAFT	30
4.2. PROPRIEDADES MORFOLÓGICAS DAS FIBRAS	31

4.3. CARACTERIZAÇÃO DAS SUSPENSÕES	32
4.4. Ensaios Físicos	34
4.4.1. Ensaios estuturais	34
4.4.1.1. Massa volúmica	34
4.4.1.2. Lisura	35
4.4.1.3. Permeabilidade ao ar	37
4.4.1.4. Rigidez	38
4.4.2. Ensaios ópticos	39
4.4.3. Ensaios de Resistência mecânica	41
4.4.3.1. Índice de tracção	41
4.4.3.2. Alongamento	43
4.4.3.3. Resistência ao rasgamento	44
4.4.3.4. Resistência ao rebentamento	46
4.4.3.5. Índice Zero-span	47
5. CONCLUSÕES	50
6. REFERÊNCIAS BIBLIOGRÁFICAS	51
AGRADECIMENTOS	
ANEXOS	

RESUMO

Com o presente trabalho pretendeu-se avaliar o efeito das massas volúmicas básicas de madeiras de *Acacia melanoxylon* (449, 489, 493, 505, 514 e 616 kg/m³) sobre as características das fibras e as correspondentes propriedades do papel. Para a produção das pastas cruas foram realizados os cozimentos Kraft. As pastas cruas obtidas, depois de desintegradas e lavadas, foram submetidas a um branqueamento ECF segundo uma sequência de cinco estágios (D₀E₁D₁E₂D₂). Partindo das pastas branqueadas e posteriormente refinadas para os níveis de refinação: 0; 500; 2500 e 4500 revoluções PFI, produziram-se folhas de papel laboratoriais. Posteriormente, caracterizou-se a suspensão fibrosa e o potencial papeleiro.

O efeito da refinação é altamente significativo para as propriedades analisadas, explicando na maior parte dos casos a maioria da variação encontrada, no entanto, o efeito da massa volúmica também é significativo.

A aptidão papeleira do papel produzido com fibra de *Acacia melanoxylon* é afectada pela densidade da madeira, em especial devido às diferenças de densidade que imprime ao papel e pelas características da fibra através da sua colapsibilidade e flexibilidade.

Palavras-chave: Acacia melanoxylon, densidade da madeira, fibras, potencial papeleiro.